堆排序法排序怎么排

作者:原创时间:2022-05-25
文档

排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是堆排序算法:

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示


代码实现

JavaScript

实例

var len;    // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) {   // 建立大顶堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     // 堆调整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length-1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}

Python

实例

def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
    return arr

Go

实例

func heapSort(arr []int) []int {
        arrLen := len(arr)
        buildMaxHeap(arr, arrLen)
        for i := arrLen - 1; i >= 0; i-- {
                swap(arr, 0, i)
                arrLen -= 1
                heapify(arr, 0, arrLen)
        }
        return arr
}

func buildMaxHeap(arr []int, arrLen int) {
        for i := arrLen / 2; i >= 0; i-- {
                heapify(arr, i, arrLen)
        }
}

func heapify(arr []int, i, arrLen int) {
        left := 2*i + 1
        right := 2*i + 2
        largest := i
        if left < arrLen && arr[left] > arr[largest] {
                largest = left
        }
        if right < arrLen && arr[right] > arr[largest] {
                largest = right
        }
        if largest != i {
                swap(arr, i, largest)
                heapify(arr, largest, arrLen)
        }
}

func swap(arr []int, i, j int) {
        arr[i], arr[j] = arr[j], arr[i]
}

Java

实例

public class HeapSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int len = arr.length;

        buildMaxHeap(arr, len);

        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
        return arr;
    }

    private void buildMaxHeap(int[] arr, int len) {
        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
            heapify(arr, i, len);
        }
    }

    private void heapify(int[] arr, int i, int len) {
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        int largest = i;

        if (left < len && arr[left] > arr[largest]) {
            largest = left;
        }

        if (right < len && arr[right] > arr[largest]) {
            largest = right;
        }

        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, largest, len);
        }
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

}

PHP

实例

function buildMaxHeap(&$arr)
{
    global $len;
    for ($i = floor($len/2); $i >= 0; $i--) {
        heapify($arr, $i);
    }
}

function heapify(&$arr, $i)
{
    global $len;
    $left = 2 * $i + 1;
    $right = 2 * $i + 2;
    $largest = $i;

    if ($left < $len && $arr[$left] > $arr[$largest]) {
        $largest = $left;
    }

    if ($right < $len && $arr[$right] > $arr[$largest]) {
        $largest = $right;
    }

    if ($largest != $i) {
        swap($arr, $i, $largest);
        heapify($arr, $largest);
    }
}

function swap(&$arr, $i, $j)
{
    $temp = $arr[$i];
    $arr[$i] = $arr[$j];
    $arr[$j] = $temp;
}

function heapSort($arr) {
    global $len;
    $len = count($arr);
    buildMaxHeap($arr);
    for ($i = count($arr) - 1; $i > 0; $i--) {
        swap($arr, 0, $i);
        $len--;
        heapify($arr, 0);
    }
    return $arr;
}

C

实例

#include
#include

void swap(int *a, int *b) {
    int temp = *b;
    *b = *a;
    *a = temp;
}

void max_heapify(int arr[], int start, int end) {
    // 建立父節點指標和子節點指標
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子節點指標在範圍內才做比較
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
            son++;
        if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數
            return;
        else { // 否則交換父子內容再繼續子節點和孫節點比較
            swap(&arr[dad], &arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    int i;
    // 初始化,i從最後一個父節點開始調整
    for (i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢
    for (i = len - 1; i > 0; i--) {
        swap(&arr[0], &arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    int i;
    for (i = 0; i < len; i++)
        printf("%d ", arr[i]);
    printf(" ");
    return 0;
}

C++

实例

#include
#include
using namespace std;

void max_heapify(int arr[], int start, int end) {
    // 建立父節點指標和子節點指標
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子節點指標在範圍內才做比較
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
            son++;
        if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數
            return;
        else { // 否則交換父子內容再繼續子節點和孫節點比較
            swap(arr[dad], arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    // 初始化,i從最後一個父節點開始調整
    for (int i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先將第一個元素和已经排好的元素前一位做交換,再從新調整(刚调整的元素之前的元素),直到排序完畢
    for (int i = len - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    for (int i = 0; i < len; i++)
        cout << arr[i] << ' ';
    cout << endl;
    return 0;
}

参考文章:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

以下是热心网友对堆排序算法的补充,仅供参考:

热心网友提供的补充1:

上方又没些 C# 的堆排序,艾孜尔江补充如下:

/// 
/// 堆排序
/// 
/// 待排序数组
static void HeapSort(int[] arr)
{
    int vCount = arr.Length;
    int[] tempKey = new int[vCount + 1];
    // 元素索引从1开始
    for (int i = 0; i < vCount; i++)
    {
        tempKey[i + 1] = arr[i];
    }
    // 初始数据建堆(从含最后一个结点的子树开始构建,依次向前,形成整个二叉堆)
    for (int i = vCount / 2; i >= 1; i--)
    {
        Restore(tempKey, i, vCount);
    }
    // 不断输出堆顶元素、重构堆,进行排序
    for (int i = vCount; i > 1; i--)
    {
        int temp = tempKey[i];
        tempKey[i] = tempKey[1];
        tempKey[1] = temp;
        Restore(tempKey, 1, i - 1);
    }
    //排序结果
    for (int i = 0; i < vCount; i++)
    {
        arr[i] = tempKey[i + 1];
    }
}
/// 
/// 二叉堆的重构(针对于已构建好的二叉堆首尾互换之后的重构)
/// 
/// 
/// 根结点j
/// 结点数
static void Restore(int[] arr, int rootNode, int nodeCount)
{
    while (rootNode <= nodeCount / 2) // 保证根结点有子树
    {
        //找出左右儿子的最大值
        int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
        if (arr[m] > arr[rootNode])
        {
            int temp = arr[m];
            arr[m] = arr[rootNode];
            arr[rootNode] = temp;
            rootNode = m;
        }
        else
        {
            break;
        }
    }
}

热心网友提供的补充2:

堆排序是不稳定的排序!

既然如此,每次构建大顶堆时,在 父节点、左子节点、右子节点取三者中最大者作为父节点就行。我们追寻的只是最终排序后的结果,所以可以简化其中的步骤。

我将个人写的 Java 代码核心放在下方,有兴趣的同学可以一起讨论下:

public int[] sort(int a[]) {
    int len = a.length - 1;    
    for (int i = len; i > 0; i--) {
        maxHeap(a, i);        
        //交换 跟节点root 与 最后一个子节点i 的位置        
        swap(a, 0, i);        
        //i--无序数组尺寸减少了 
    }  
    return a;
}

/**构建一个大顶堆(完全二叉树 ) 
* 从  最后一个非叶子节点  开始,若父节点小于子节点,则互换他们两的位置。然后依次从右至左,从下到上进行! 
* 最后一个非叶子节点,它的叶子节点 必定包括了最后一个(叶子)节点,所以 最后一个非叶子节点是 a[(n+1)/2-1] 
 
* @param a 
* @param lastIndex 这个数组的最后一个元素 
*/
static void maxHeap(int a[], int lastIndex) {
    for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
       //反正 堆排序不稳定,先比较父与左子,大则交换;与右子同理。(不care 左子与右子位置是否变了!) 
        if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
            swap(a, i, i * 2 + 1);        
        }    
        if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
            swap(a, i, i * 2 + 2);        
        }
    }
}

private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
以上为堆排序算法详细介绍,插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等排序算法各有优缺点,用一张图概括:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模

k:"桶"的个数

In-place:占用常数内存,不占用额外内存

Out-place:占用额外内存

稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

显示全文
关于兰花的诗句古诗 快速排序c语言 两句关于动物的诗句 踏青的诗词名句 含有燕子的诗句 简述归并排序算法的基本思路 希尔排序怎么排 直接选择排序 基数排序流程图 python冒泡排序算法 桶排序c语言 计数排序菜鸟教程 堆排序算法规则 描写兰花的诗句古诗 快速排序算法java 带有动物的古诗 关于踏青的唯美诗句 关于描写燕子的诗句 归并排序算法python思想 希尔排序实现 计数排序算法c++实现 桶式排序 关于放风筝的古诗 冒泡排序python 基数排序怎么排 选择排序法 希尔排序 归并排序python 描写燕子的古诗绝句 踏青诗句最出名诗句 描写夏天的诗句简单 关于写小动物的诗 java快速排序 关于兰花的诗句两句 堆排序怎么排 描写元宵节的唯美诗词 如何按照计数进行排序 桶排序 写与风筝有关的诗 冒泡排序python代码