视频1 视频21 视频41 视频61 文章1 文章21 文章41 文章61 文章81 文章101 标签大全1 标签大全51 标签大全101 标签大全151 标签大全201 标签大全251 标签大全301 标签大全351 标签大全401 标签大全451 信息系统项目管理师 开学第一课观后感 男人的网站 苏轼的词 洗衣机品牌排行榜
教育

提升Python运行速度的5个小技巧

作者:原创时间:2022-08-04

Python 是世界上使用最广泛的编程语言之一。它是一种解释型高级通用编程语言,具有广泛的用途,几乎可以将其用于所有事物。其以简单的语法、优雅的代码和丰富的第三方库而闻名。python除了有很多优点外,但在速度上还有一个非常大的缺点。

虽然Python代码运行缓慢,但可以通过下面分享的5个小技巧提升Python运行速度!

首先,定义一个计时函数timeshow,通过简单的装饰,可以打印指定函数的运行时间。

这个函数在下面的例子中会被多次使用。

def timeshow(func):
    from time import time
    def newfunc(*arg, **kw):
        t1 = time()
        res = func(*arg, **kw)
        t2 = time()
        print(f"{func.__name__: >10} : {t2-t1:.6f} sec")
        return res
    return newfunc
@timeshow
def test_it():
    print("hello pytip")
test_it()

1. 选择合适的数据结构

使用正确的数据结构对python脚本的运行时间有显着影响。Python 有四种内置的数据结构:

  • 列表: List

  • 元组: Tuple

  • 集合: Set

  • 字典: Dictionary

但是,大多数开发人员在所有情况下都使用列表。这是不正确的做法,应该根据任务使用合适数据结构。

运行下面的代码,可以看到元组执行简单检索操作的速度比列表快。其中dis模块反汇编了一个函数的字节码,这有利于查看列表和元组之间的区别。

import dis
def a():
    data = [1, 2, 3, 4, 5,6,7,8,9,10]
    x =data[5]
    return x
def b():
    data = (1, 2, 3, 4, 5,6,7,8,9,10)
    x =data[5]
    return x
print("-----:使用列表的机器码:------")
dis.dis(a)
print("-----:使用元组的机器码:------")
dis.dis(b)

运行输出:

-----:使用列表的机器码:------
3 0 LOAD_CONST 1 (1)
2 LOAD_CONST 2 (2)
4 LOAD_CONST 3 (3)
6 LOAD_CONST 4 (4)
8 LOAD_CONST 5 (5)
10 LOAD_CONST 6 (6)
12 LOAD_CONST 7 (7)
14 LOAD_CONST 8 (8)
16 LOAD_CONST 9 (9)
18 LOAD_CONST 10 (10)
20 BUILD_LIST 10
22 STORE_FAST 0 (data)
4 24 LOAD_FAST 0 (data)
26 LOAD_CONST 5 (5)
28 BINARY_SUBSCR
30 STORE_FAST 1 (x)
5 32 LOAD_FAST 1 (x)
34 RETURN_VALUE
-----:使用元组的机器码:------
7 0 LOAD_CONST 1 ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
2 STORE_FAST 0 (data)
8 4 LOAD_FAST 0 (data)
6 LOAD_CONST 2 (5)
8 BINARY_SUBSCR
10 STORE_FAST 1 (x)
9 12 LOAD_FAST 1 (x)
14 RETURN_VALUE

看下列表的机器码,冗长而多余!

2. 善用强大的内置函数和第三方库

如果你正在使用python并且仍在自己编写一些通用函数(比如加法、减法),那么是在侮辱python。 Python有大量的库和内置函数来帮助你不用编写这些函数。 如果研究下,那么你会惊奇地发现几乎90%的问题已经有第三方包或内置函数来解决。

可以通过访问官方文档查看所有内置函数。你也可以在wiki python上找到更多使用内置函数的场景。

比如,现在我们想合并列表中的所有单词为一个句子,比较法自己编写和调用库函数的区别:

# ❌ 正常人能想到的方法
@timeshow
def f1(list):
    s =""
    for substring in list:
        s += substring
    return s
# ✅ pythonic 的方法
@timeshow
def f2(list):
    s = "".join(list)
    return s
l = ["I", "Love", "Python"] * 1000 # 为了看到差异,我们把这个列表放大了
f1(l)
f2(l)

运行输出:

f1 : 0.000227 sec
f2 : 0.000031 sec

3. 少用循环

  • 用 列表推导式 代替循环

  • 用 迭代器 代替循环

  • 用 filter() 代替循环

  • 减少循环次数,精确控制,不浪费CPU

## 返回n以内的可以被7整除的所有数字。
# ❌ 正常人能想到的方法:
@timeshow
def f_loop(n): 
    L=[]
    for i in range(n):
        if i % 7 ==0:
            L.append(i)
    return L
#  ✅ 列表推导式
@timeshow
def f_list(n):
    L = [i for i in range(n) if i % 7 == 0]
    return L
# ✅  迭代器
@timeshow
def f_iter(n):
    L = (i for i in range(n) if i % 7 == 0)
    return L
# ✅ 过滤器 
@timeshow
def f_filter(n):
    L = filter(lambda x: x % 7 == 0, range(n))
    return L
# ✅ 精确控制循环次数 
@timeshow
def f_mind(n):
    L = (i*7 for i in range(n//7))
    return L
n = 1_000_000
f_loop(n)
f_list(n)
f_iter(n)
f_filter(n)
f_mind(n)

输出为:

f_loop : 0.083017 sec
f_list : 0.056110 sec
f_iter : 0.000015 sec
f_filter : 0.000003 sec
f_mind : 0.000002 sec

谁快谁慢,一眼便知!

filter 配合lambda大法就是屌!!!

4. 避免循环重复计算

如果你有一个迭代器,必须用它的元素做一些耗时计算,比如匹配正则表达式。你应该将正则表达式模式定义在循环之外,因为最好只编译一次模式,而不是在循环的每次迭代中一次又一次地编译它。

只要有可能,就应该尝试在循环外进行尽可能多的运算,比如将函数计算分配给局部变量,然后在函数中使用它。

# ❌ 应改避免的方式:
@timeshow
def f_more(s):
    import re
    for i in s:
        m = re.search(r'a*[a-z]?c', i)
# ✅ 更好的方式:
@timeshow
def f_less(s):
    import re
    regex = re.compile(r'a*[a-z]?c')
    for i in s:
        m = regex.search(i)
s = ["abctestabc"] * 1_000
f_more(s)
f_less(s)

输出为:

f_more : 0.001068 sec
f_less : 0.000365 sec

5. 少用内存、少用全局变量

内存占用是指程序运行时使用的内存量。为了让Python代码运行得更快,应该减少程序的内存使用量,即尽量减少变量或对象的数量。

Python 访问局部变量比全局变量更有效。在有必要之前,应该始终尝试忽略声明全局变量。一个在程序中定义过的全局变量会一直存在,直到整个程序编译完成,所以它一直占据着内存空间。另一方面,局部变量访问更快,且函数完成后即可回收。因此,使用多个局部变量比使用全局变量会更好。

# ❌ 应该避免的方式:
message = "Line1\n"
message += "Line2\n"
message += "Line3\n"
# ✅ 更好的方式:
l = ["Line1","Line2","Line3"]
message = '\n'.join(l)
# ❌ 应该避免的方式:
x = 5
y = 6 
def add():
    return x+y
add()
# ✅ 更好的方式:
def add():
    x = 5
    y = 6
    return x+y
add()

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注好二三四的更多内容!

显示全文
稻城是哪里的 舍利是什么 凿壁偷光的主人公是谁 怎么开通和关闭GPRS上网 明矾指的是什么 乐不思蜀的主角 甘蓝菜指的是什么 低碳生活方式有哪些 冰箱怎么除冰 手机铃声没声音怎么回事 春节起源 手机隐私密码忘记了怎么办 苹果4s手机忘记id密码怎么办 怎么样喝龙井茶 监控器忘记密码怎么办 吃柚子的好处有哪些 夏威夷是属于哪个洲的 破釜沉舟是出自于哪次战争 赤壁之战的故事概括 玉树的养殖方法是什么 柏拉图式的爱情什么意思 元宵与汤圆的区别 圆周率是谁发明出来的 布达拉宫是在哪里的 什么是蜂蜡 避暑山庄在哪里 如何保存螃蟹 月亮从哪边升起 阿尔卑斯山脉在哪里 四大文明古国指的是什么 诸葛亮是怎么死的 卧薪尝胆中的主人公是谁 草莓酱的简单制作方法 手机扬声器进水声音变小了该怎么办 酷派手机为什么来电没声音是怎么回事 酷派手机没有声音怎么办啊 频繁给手机充电有坏处吗 连接电脑后手机只充电没反应了 手机一边玩一边充电对电池有影响吗 充电宝可以一边充电一边充手机吗